Thursday, October 25, 2012

Formula One Engines - Video

formula 1 cars, 
formula 1 cars for sale, 

formula 1 cars price, 
formula 1 cars 2012, 
formula 1 cars history, 
formula 1 live, 
formula 1 engine, 
formula 1 cars top speed

Since its inception in 1947, Formula One has used a variety of engine regulations. "Formulas" limiting engine capacity had been used in Grand Prix racing on a regular basis since after World War I. The engine formulae are divided according to era.
formula 1 cars, formula 1 cars for sale, formula 1 cars price, formula 1 cars 2012, formula 1 cars history, formula 1 live, formula 1 engine, ferrari., formula 1 cars top speed


Formula One currently uses four-stroke V8, naturally aspirated reciprocating engines. They typically produce 224 kilowatts (300 bhp, 304 PS) per litre of displacement, far higher than most naturally aspirated internal combustion engines.

The power a Formula One engine produces is generated by operating at a very high rotational speed, up to 18,000 revolutions per minute (RPM). This contrasts with road car engines of a similar size which operate safely at typically less than 7,000 rpm. The basic configuration of a naturally aspirated Formula One engine has not been greatly modified since the 1967 Cosworth DFV and the mean effective pressure has stayed at around 14 bar MEP.Until the mid-1980s Formula One engines were limited to around 12,000 rpm due to the traditional metal valve springs used inside the engine to close the valves. The speed required to operate the engine valves at a higher RPM is much greater than the metal valve springs can achieve and they were replaced by pneumatic valve springs introduced by Renault.Since the 1990s, all Formula One engine manufacturers now use pneumatic valve springs with the pressurised air allowing engines to reach speeds of nearly 20,000 rpm.
The bore is the diameter of the cylinder in the engine block, and the stroke is the distance the piston travels from top dead-centre (TDC) to bottom dead-centre (BDC) inside the cylinder. To operate at high engine speeds the stroke must be relatively short to prevent catastrophic failure, usually connecting rod failure as they are under very large stresses at these speeds. Having a short stroke means that a relatively large bore is required to make the 2.4 litre displacement. This results in a less efficient combustion stroke, especially at lower RPM. The stroke of a Formula One engine is approximately 39.7 mm (1.56 in), less than half as long as the bore is wide (98.0 mm) producing an over-square configuration.
In addition to the use of pneumatic valve springs a Formula One engine's high RPM output has been made possible due to advances in metallurgy and design allowing lighter pistons and connecting rods to withstand the accelerations necessary to attain such high speeds, also by narrowing the connecting rod ends allowing for narrower main bearings. This allows for higher RPM with less bearing-damaging heat build-up. For each stroke, the piston goes from a null speed, to almost two times the mean speed, (approx. 40 m/s) then back to zero. This will occur 4 times for each of the 4 strokes in the cycle. Maximum piston acceleration occurs at mid‑stroke and is in the region of 95,000 m/s2, about 10,000 times standard gravity or 10,000 g.

Formula One engines History
Formula One engines have come through a variety of regulations, manufacturers and configurations through the years.
This Alfa Romeo 159 supercharged straight-8 engine of 1950s could produce up to 425 bhp.
This Alfa Romeo 159 supercharged straight-8 engine of 1950s could produce up to 425 bhp.
This era used pre-war voiturette engine regulations, with 4.5 L atmospheric and 1.5 L supercharged engines. Formula 2 cars were allowed, and the World Championship was run under F2 rules in 1952 and 1953, but F1 races were still held in those years. The Indianapolis 500 used pre-war Grand Prix regulations, with 4.5 L atmospheric and 3.0 L supercharged engines. The power range was up to 425 hp (317 kW).
Follow Us

Alta inline-4 1.5 L Compressor
Alfa Romeo inline-8 1.5 L Compressor
Bristol inline-6 2.0 L
BRM V16 1.5 L Compressor
ERA inline-6 1.5 L Compressor
Ferrari inline-4 2.0 L (F2), V12 1.5 L Compressor, V12 2.0 L (F2) and V12 4.5 L
Gordini inline-6 2.0 L (F2)
Lea-Francis inline-4 2.0 L (F2)
Maserati inline-4 1.5 L Compressor and inline-6 2.0 L (F2)
O.S.C.A. V12 4.5 L
Simca-Gordini inline-4 1.5 L Compressor
Talbot-Lago inline-6 4.5 L

Formula One Engines 1954–1960
A 2.5 L V8 in the Lancia-Ferrari D50
Formula One Engines 1954–1960  A 2.5 L V8 in the Lancia-Ferrari D50
Engine size was reduced to 2.5 L. 750 cc supercharged cars were allowed but no constructor built one for the World Championship. The Indianapolis 500 continued to use old pre-war regulations. The power range was up to 290 hp (216 kW).
Alta inline-4 2.5 L
Aston Martin inline-6 2.5 L
BRM inline-4 2.5 L
Bugatti inline-8 2.5
Coventry Climax inline-4 2.0 L and inline-4 2.5 L, V8 2.5 L (unraced in this period but reappeared as a 3.0 L - see below)
Ferrari inline-4 2.5 L and V6 2.5 L. Ferrari also built an experimental 2.5 L inline-2 engine, but this never appeared in public.
Gordini inline-6 2.5 L; inline-8 2.5
Lancia V8 2.5 L (after Lancia withdrew from F1, these engines were used by Ferrari)
Maserati inline-4 2.5 L, inline-6 2.5 L and V12 2.5 L
Mercedes double-inline-4 2.5 L
Offenhauser inline-4 1.7 L (run by Rodger Ward in a Kurtis midget in the USA)
Scarab inline-4 2.5 L (designed by Offenhauser)
Vanwall inline-4 2.5 L

Porsche 804 had a cooling fan to cool the air-cooled flat-8 engine.
Formula 1 Porsche 804 engine  had a cooling fan to cool the air-cooled flat-8 engine.
Introduced in 1961 amidst some criticism, the new reduced engine 1.5 L formula took control of F1 just as every team and manufacturer switched from front to mid-engined cars. Although these were initially underpowered, five years later average power had increased by nearly 50% and lap times were better than in 1960. The old 2.5 L formula had been retained for International Formula racing, but this didn't achieve much success until the introduction of the Tasman Series in Australia and New Zealand during the winter season, leaving the 1.5 L cars as the fastest single seaters in Europe during this time. The power range was between 150 hp (112 kW) and 225 hp (168 kW).
ATS V8 1.5 L
BRM V8 1.5 L
Clisby V6 1.5 L (intended for the stillborn Ausper F1 project; never raced)
Coventry Climax inline-4 1.5 L, V8 1.5 L and Flat-16 1.5 L (never raced)
Ford inline-4 1.5 L
Ferrari V6 1.5 L, V8 1.5 L and Flat-12 1.5 L
Honda V12 1.5 L
Porsche Flat-4 1.5 L aircooled and Flat-8 1.5 L aircooled
Maserati inline-4 1.5 L & V12 1.5 L (never raced)
Formula One Engines 1966–1986

A Cosworth DFV 3L V8 Formula One engine.
 A Cosworth DFV 3L V8 Formula One engine.

A 1968 British Racing Motors H16, 64-valve, Formula One engine.

Ferrari F1 Schumacher-06 V10 Testing online

Powered by
In 1966, with sports cars capable of outrunning Formula 1 cars thanks to much larger and more powerful engines, the FIA increased engine capacity to 3.0 L atmospheric and 1.5 L supercharged engines. Although a few manufacturers had been clamouring for bigger engines, the transition wasn't smooth and 1966 was a transitional year, with 2.0 L versions of the BRM and Coventry-Climax V8 engines being used by several entrants. The appearance of the standard-produced Cosworth DFV in 1967 made it possible for any small manufacturer to join the series with a home-built tub. Supercharging was allowed for the first time since 1960, but it wasn't until 1977 that it became viable, when Renault debuted their new Gordini V6 Turbo. Following their experiences at Indianapolis, in 1971 Lotus made a few unsuccessful experiments with a Pratt & Whitney turbine fitted to chassis which had also 4WD. The power range was between 390 hp (290 kW) to 500 hp (370 kW), turbos 500 hp (370 kW) to 900 hp (670 kW) in race, in qualifying up to 1,500 hp (1,120 kW).
Alfa Romeo V8 1.5 L Turbo, V8 3.0 L, Flat-12 3.0 L and V12 3.0 L
BMW M12 inline-4 1.5 L Turbo
BRM H16 3.0 L and V12 3.0 L
Coventry Climax V8 3.0 L (modified FPE engine; one race in the Shannon F1 car)
Ferrari V6 1.5 L Turbo, V12 3.0 L and Flat-12 3.0 L
Ford V6 1.5 L Turbo and V8 3.0 L (derived from the 4.2 L Indy Car engine)
Ford Cosworth DFV V8 3.0 L and DFY V8 3.0 L
Hart inline-4 1.5 L Turbo
Honda V12 3.0 L, V8 3.0 L air-cooled and V6 1.5 L Turbo
Maserati V12 3.0 L
Matra V12 3.0 L
Motori Moderni V6 1.5  Turbo
Repco V8 3.0 L
Renault Gordini V8 (never raced) 3.0 L and Gordini V6 1.5 L Turbo
Serenissima V8 3.0 L
TAG-Porsche V6 1.5 L Turbo
Tecno Flat-12 3.0 L
Weslake V12 3.0 L
Zakspeed inline-4 1.5 L Turbo
Formula One Engines 1987–1988
Following the turbo domination, forced induction was allowed for two seasons before its eventual ban. The FIA regulations limited boost pressure, to 4 bar in qualification in 1987 for 1.5 L turbo; and allowed a bigger 3.5 L formula. These seasons were still dominated by turbocharged engines, the Honda RA167E V6 supplying Nelson Piquet winning the 1987 Formula One season on a Williams also winning the constructors championship, followed by TAG-Porsche P01 V6 in McLaren then Honda again with the previous RA166E for Lotus then Ferrari's own 033D V6.
The rest of the grid was powered by the Ford GBA V6 turbo with Benetton, then the only naturally aspirated engine, the DFV-derived Ford Cosworth DFZ 3.5 L V8 outputting 575 hp (429 kW) in Tyrrell, Lola, AGS, March and Coloni.  The BMW M12/13 inline four was found in Brabhams BT55 tilted almost horizontally, and in upright position under the Megatron brand in Arrows and one Ligier, producing 900 bhp (670 kW) at 3.8 bars in race.Zakspeed was building its own turbo inline four, Alfa Romeo was powering the other Ligier with the 415T inline four and the 890T V8 in Osella, and Minardi was powered by a Motori Moderni V6.
The 1988 Formula One season was again dominated by turbocharged engines limited to 2.5 bar and Honda with its RA168E turbo V6 producing 685 hp (511 kW) at 12500 rpm in qualification, this time with McLaren drivers Ayrton Senna and Alain Prost winning all the grands prix except one won by Ferrari with its 033E V6. Just behind, Ford introduced its DFR 3.5 L V8 producing 585 hp (436 kW) at 11000 rpm for Benetton, and the Megatron BMW M12/13 was still powering Arrows ahead of the Lotus-Honda. Judd introduced its CV 3.5 L V8 for March, Williams and Ligier, and the rest of the grid was mainly using previous year's Ford Cosworth DFZ except Zakspeed and the Alfa-Romeo for Osella.

Formula One Engines 1989–1994

A 1990 W12 3.5 Formula One engine from the Life F1 car
Turbochargers were banned from the 1989 Formula One season, leaving only a naturally aspirated 3.5 L formula. Honda was still dominant with their RA109E 72° V10 giving 675 hp (503 kW) at 13000 rpm on McLaren cars, enabling Prost to win the championship in front of his team-mate Senna. Behind were the Renault RS01 powered Williams, a 67° V10 giving 650 hp (485 kW) at 14300 rpm. Ferrari with its 035/5 65° V12 giving 660 hp (492 kW) at 13,000 rpm. Behind, the grid was powered mainly by Ford Cosworth DFR V8 giving 595 hp (444 kW) at 10,750 rpm except for a few 600 hp (450 kW) Judd CV V8 in Lotus, Brabham and EuroBrun cars, and two oddballs: the Lamborghini 3512 80° V12 powering Lola and the Yamaha OX88 75° V8 in Zakspeed cars. Ford started to try its new design, the 75° V8 HBA 1 with Benetton.
The 1990 Formula One season was again dominated by Honda in McLarens with the 690 hp (515 kW) at 13000 rpm RA100E powering Ayrton Senna and Gerhard Berger ahead of the 680 hp (507 kW) at 12750 rpm Ferrari Tipo 036 of Alain Prost and Nigel Mansell. Behind them the Ford HBA4 for Benetton and Renault RS2 for Williams with 660 hp (492 kW) at 12,800 rpm were leading the pack powered by Ford DFR and Judd CV engines. The exceptions were the better Lamborghini 3512 in Lola and Lotus, and the new Judd EV 76° V8 giving 640 hp (477 kW) at 12,500 rpm in Leyton House and Brabham cars. The two new contenders were the Life which built for themselves an F35 W12 with three four cylinders banks at 60°, and Subaru giving Coloni a 1235 flat 12 from Motori Moderni
Honda was still leading the 1991 Formula One season in Senna's McLaren with a 710 hp (529 kW) at 13,000 rpm 60° V12 RA121E, just ahead of the Renault RS3 powered Williams benefiting from 700 hp (520 kW) at 12,500 rpm. Ferrari was behind with its Tipo 037, a new 65° V12 giving 710 hp (529 kW) at 13,800 rpm also powering Minardi, just ahead the Ford HBA4/5/6 in Benetton and Jordan cars. Behind, Tyrrell was using the previous Honda RA109E, Judd introduced its new GV with Dallara leaving the previous EV to Lotus, Yamaha were giving its 660 hp (492 kW) OX99 70° V12 to Brabham, Lamborghini engines were used by Modena and Ligier. Ilmor introduced its LH10, a 680 hp (507 kW) at 13000 rpm V10 which eventually became the Mercedes with Leyton House and Porsche sourced a little successful 3512 V12 to Footwork Arrows; the rest of the field was Ford DFR powered.
By the end of the 1994 season, Ferrari's 043 was putting out 820 hp (611 kW) at 15,800 rpm.

Formula One Engines 1995–2005

This Ferrari 3.0 litre V12 F1 engine (1995) produced 700 hp (522 kW) at 17,000 rpm

A 2004 Ferrari model 054 V10 engine of the Ferrari F2004
This era used a 3.0 L formula, with a power range between 650 hp (485 kW) and 950 hp (708 kW). Renault supplied engines to Williams from 1990 to 1997, Renault powered cars winning 5 world championships in that period. From 1998 to 2000 it was Mercedes power that ruled giving Mika Häkkinen 2 world championships. Ferrari gradually got better with their engine. For 1996, they changed from their traditional V12 engine to a smaller and lighter V10 engine. They preferred reliability to power, losing out to Mercedes in terms of outright power initially. At the 1998 Japanese GP, Ferrari's 047D engine spec was said to produce over 800 bhp (600 kW). From 2000 they were never short of power nor reliability.
BMW started supplying their engines to Williams from 2000. In the first season, the engine was very reliable though slightly short of power compared to Ferrari and Mercedes units. BMW went straight forward with its engine development. The P81, used during the 2001 season, was able to hit 17,810 rpm. Unfortunately reliability was a big issue with several blowups during the season.
The BMW P82, the engine used by the BMW WilliamsF1 Team in 2002, had hit a peak speed of 19,050 revolutions a minute in its final evolutionary stage. It was also the first engine in the 3.0 liter V10-era to break through the 19,000 rpm-wall, during 2002 Austria Grand Prix's qualifying. BMW's P83 engine used in 2003 season managed an impressive 19,200 rpm and cleared the 900 bhp (670 kW) mark and weighs less than 200 lb (91 kg).
In 2005, the 3.0 L V10 engine was permitted no more than 5 valves per cylinder. Also, the FIA introduced new regulations limiting each car to one engine per two Grand Prix weekends, putting the emphasis on increased reliability and decreased power output.
Formula One Engines 2006–2013
For 2006, the engines had to be 90° V8 of 2.4 litres maximum capacity with a 98 mm maximum circular bore, which imply a 39.7 mm minimum stroke. They had to have two circular inlet and exhaust valves per cylinder, be normally aspirated and have a 95 kg (209 lb) minimum weight. The previous year's engines with a rev-limiter were permitted for 2006 and 2007 for teams who unable to acquire a V8 engine, with Scuderia Toro Rosso using a Cosworth V10, after Red Bull's takeover of the former Minardi team did not include the new Formula One Engines .
Subscribe to me on YouTube
Pre-cooling air before it enters the cylinders, injection of any substance other than air and fuel into the cylinders, variable-geometry intake and exhaust systems, variable valve timing were forbidden. Each cylinder could have only one fuel injector and a single plug spark ignition. Separate starting devices were used to start engines in the pits and on the grid. The crankcase and cylinder block had to be made of cast or wrought aluminium alloys. The crankshaft and camshafts had to be made from an iron alloy, pistons from an aluminium alloy and valves from alloys based on iron, nickel, cobalt or titanium. These restrictions were in place to reduce development costs on the engines.
The reduction in capacity was designed to give a power reduction of around 20% from the three litre engines, to reduce the increasing speeds of Formula One cars. However in many cases, performance of the car improved. In 2006 Toyota F1 announced an approximate 740 hp (552 kW) output at 19000 rpm for its new RVX-06 engine, but real figures are of course difficult to obtain.
The engine specification was frozen in 2007 to keep development costs down. The engines which were used in the 2006 Japanese Grand Prix were used for the 2007 and 2008 seasons and they were limited to 19,000 rpm. In 2009 the limit was reduced to 18,000 rpm with each driver allowed to use a maximum of 8 engines over the season. Any driver needing an additional engine is penalised 10 places on the starting grid for the first race the engine is used. This increases the importance of reliability, although the effect is only seen towards the end of the season. Certain design changes intended to improve engine reliability may be carried out with permission from the FIA. This has led to some engine manufacturers, notably Ferrari and Mercedes, exploiting this ability by making design changes which not only improve reliability, but also boost engine power output as a side effect. As the Mercedes engine was proven to be the strongest, re-equalisations of engines were allowed by the FIA to allow other manufacturers to match the power.
2009 saw the exit of Honda from Formula 1. The team was acquired by Ross Brawn, creating Brawn GP and the BGP 001. With the absence of the Honda engine, Brawn GP retrofitted the Mercedes engine to the BGP 001 chassis, which resulted in a very successful season: the newly branded team won both the Constructors' Championship and the Drivers' Championship from better-known and -established contenders Ferrari, McLaren-Mercedes, and Renault.
Subscribe to me on YouTube
Cosworth, absent since the 2006 season, returned in 2010. New teams Lotus Racing, HRT, and Virgin Racing, along with the established Williams, used this engine. The season also saw the withdrawal of the BMW and Toyota engines, as the car companies withdrew from Formula One due to the recession.
Formula One Engines 2014
The FIA has announced the intention to change the 2.4-litre V8 engines to 1.6 litre V6 turbo engines including energy recovery systems and containing fuel flow restrictions, in order to make Formula One more environmentally aware and to attract more commercial partners for 2014. The engines would also be limited to 15,000 rpm. In addition to the current suppliers, a new company, Propulsion Universelle et Recuperation d'Energie (PURE), has been founded to produce the 2014-specification engines, in the ex Toyota F1 base in Cologne. The new formula is set to reintroduce turbocharged engines, which last appeared in 1988, have their efficiency improved by turbo-compounding and introduce more energy recovery systems - with power to be harvested from the brakes and exhaust gases. The original proposal for four-cylinder turbocharged engines was not welcomed by the racing teams, in particular Ferrari. Adrian Newey stated during the 2011 European Grand Prix that the change to a V6 enables teams to carry the engine as a stressed member, whereas an inline 4 would have required a space frame. A compromise was reached to adopt V6 turbocharged engines instead.


Post a Comment

Popular Posts